PICIN: A Particle-in-Cell Solver for Incompressible Free Surface Flows with Two-Way Fluid-Solid Coupling

نویسندگان

  • D. M. Kelly
  • Q. Chen
  • J. Zang
چکیده

This paper details a novel numerical approach for solution of the Navier–Stokes equations for free surface flows involving two-way fluid-solid interaction in arbitrary domains. The approach, which is hybrid Eulerian Lagrangian in nature, is based on the full particle particle-in-cell (PIC) method applied to incompressible flows. An extension of the distributed Lagrange multiplier (DLM) technique proposed by Patankar et al. [Int. J. Multiphase Flow, 26 (2000), pp. 1509–1524] is employed for the two-way fluid-solid coupling. The resulting code is called PICIN. Solid bodies can be mobile, either having prescribed motion or moving as a consequence of interaction with the fluid. Numerical results for three distinct example applications of the model in two spatial dimensions are given. A comparison of PICIN predictions with state-of-the-art numerical results of other researchers is made for each of the test cases presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory

This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...

متن کامل

‎Incompressible ‎smoothed particle hydrodynamics simulations on free surface flows

‎The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH)‎. ‎In the current ISPH method‎, ‎the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...

متن کامل

Numerical investigation of free surface flood wave and solitary wave using incompressible SPH method

Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...

متن کامل

Simulation of Gravity Wave Propagation in Free Surface Flows by an Incompressible SPH Algorithm

This paper presents an incompressible smoothed particle hydrodynamics (SPH) model to simulate wave propagation in a free surface flow. The Navier-Stokes equations are solved in a Lagrangian framework using a three-step fractional method. In the first step, a temporary velocity field is provided according to the relevant body forces. This velocity field is renewed in the second step to include t...

متن کامل

Particle–In–Cell Numerical Solver for Free Surface Flows with Fluid–Solid Interactions

for the 30th Intl Workshop on Water Waves and Floating Bodies, Bristol (UK), April 12–15,2015 Particle–In–Cell Numerical Solver for Free Surface Flows with Fluid–Solid Interactions by Q. Chen1,* , J. Zang1 , D. M. Kelly2,3, C. J. K. Williams1 and A. Dimakopoulos2 1Department of Architecture and Civil Engineering, University of Bath, BA2 7AY, U.K. 2H R Wallingford, Wallingford, Oxon, OX10 8BA, U...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2015